首页图像处理2013计算机视觉代码合集一站长QQ:926563750

浏览

0

回复

2013计算机视觉代码合集一

作者:cvchina | 分类:图像处理 | 标签:源码 特征提取 目标检测 机器学习 

一、特征提取Feature Extraction:

 

二、图像分割Image Segmentation:

  • Normalized Cut [1] [Matlab code]

  • Gerg Mori’ Superpixel code [2] [Matlab code]

  • Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

  • Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]

  • OWT-UCM Hierarchical Segmentation [5] [Resources]

  • Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

  • Quick-Shift [7] [VLFeat]

  • SLIC Superpixels [8] [Project]

  • Segmentation by Minimum Code Length [9] [Project]

  • Biased Normalized Cut [10] [Project]

  • Segmentation Tree [11-12] [Project]

  • Entropy Rate Superpixel Segmentation [13] [Code]

  • Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]

  • Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]

  • Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]

  • Random Walks for Image Segmentation[Paper][Code]

  • Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]

  • An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]

  • Geodesic Star Convexity for Interactive Image Segmentation[Project]

  • Contour Detection and Image Segmentation Resources[Project][Code]

  • Biased Normalized Cuts[Project]

  • Max-flow/min-cut[Project]

  • Chan-Vese Segmentation using Level Set[Project]

  • A Toolbox of Level Set Methods[Project]

  • Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]

  • Improved C-V active contour model[Paper][Code]

  • A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]

  • Level Set Method Research by Chunming Li[Project]

  • ClassCut for Unsupervised Class Segmentation[code]

  • SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]

 

三、目标检测Object Detection:

  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones’s Face Detection [6] [Project]

  • Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]

  • Hand detection using multiple proposals[Project]

  • Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]

  • Discriminatively trained deformable part models[Project]

  • Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]

  • Image Processing On Line[Project]

  • Robust Optical Flow Estimation[Project]

  • Where's Waldo: Matching People in Images of Crowds[Project]

  • Scalable Multi-class Object Detection[Project]

  • Class-Specific Hough Forests for Object Detection[Project]

  • Deformed Lattice Detection In Real-World Images[Project]

  • Discriminatively trained deformable part models[Project]

 

四、显著性检测Saliency Detection:

  • Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  • Global Contrast based Salient Region Detection [12] [Project]

  • Bayesian Saliency via Low and Mid Level Cues[Project]

  • Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]

  • Saliency Detection: A Spectral Residual Approach[Code]

 

五、图像分类、聚类Image Classification, Clustering

  • Pyramid Match [1] [Project]

  • Spatial Pyramid Matching [2] [Code]

  • Locality-constrained Linear Coding [3] [Project] [Matlab code]

  • Sparse Coding [4] [Project] [Matlab code]

  • Texture Classification [5] [Project]

  • Multiple Kernels for Image Classification [6] [Project]

  • Feature Combination [7] [Project]

  • SuperParsing [Code]

  • Large Scale Correlation Clustering Optimization[Matlab code]

  • Detecting and Sketching the Common[Project]

  • Self-Tuning Spectral Clustering[Project][Code]

  • User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]

  • Filters for Texture Classification[Project]

  • Multiple Kernel Learning for Image Classification[Project]

  • SLIC Superpixels[Project]

 

六、抠图Image Matting

  • A Closed Form Solution to Natural Image Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]

 

七、目标跟踪Object Tracking:

  • A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]

  • Object Tracking via Partial Least Squares Analysis[Paper][Code]

  • Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]

  • Online Visual Tracking with Histograms and Articulating Blocks[Project]

  • Incremental Learning for Robust Visual Tracking[Project]

  • Real-time Compressive Tracking[Project]

  • Robust Object Tracking via Sparsity-based Collaborative Model[Project]

  • Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]

  • Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]

  • Superpixel Tracking[Project]

  • Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]

  • Online Multiple Support Instance Tracking [Paper][Code]

  • Visual Tracking with Online Multiple Instance Learning[Project]

  • Object detection and recognition[Project]

  • Compressive Sensing Resources[Project]

  • Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]

  • Tracking-Learning-Detection[Project][OpenTLD/C++ Code]

  • the HandVu:vision-based hand gesture interface[Project]

  • Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]

 

八、Kinect:

 

九、3D相关:

  • 3D Reconstruction of a Moving Object[Paper] [Code]

  • Shape From Shading Using Linear Approximation[Code]

  • Combining Shape from Shading and Stereo Depth Maps[Project][Code]

  • Shape from Shading: A Survey[Paper][Code]

  • A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]

  • Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]

  • A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]

  • Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]

  • Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]

  • Learning 3-D Scene Structure from a Single Still Image[Project]

 

十、机器学习算法:

  • Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class providing interface toANN library]

  • Random Sampling[code]

  • Probabilistic Latent Semantic Analysis (pLSA)[Code]

  • FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]

  • Fast Intersection / Additive Kernel SVMs[Project]

  • SVM[Code]

  • Ensemble learning[Project]

  • Deep Learning[Net]

  • Deep Learning Methods for Vision[Project]

  • Neural Network for Recognition of Handwritten Digits[Project]

  • Training a deep autoencoder or a classifier on MNIST digits[Project]

  • THE MNIST DATABASE of handwritten digits[Project]

  • Ersatz:deep neural networks in the cloud[Project]

  • Deep Learning [Project]

  • sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]

  • Weka 3: Data Mining Software in Java[Project]

  • Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]

  • CNN - Convolutional neural network class[Matlab Tool]

  • Yann LeCun's Publications[Wedsite]

  • LeNet-5, convolutional neural networks[Project]

  • Training a deep autoencoder or a classifier on MNIST digits[Project]

  • Deep Learning 大牛Geoffrey E. Hinton's HomePage[Website]

  • Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]

  • Sparse coding simulation software[Project]

  • Visual Recognition and Machine Learning Summer School[Software]

 

十一、目标、行为识别Object, Action Recognition:

  • Action Recognition by Dense Trajectories[Project][Code]

  • Action Recognition Using a Distributed Representation of Pose and Appearance[Project]

  • Recognition Using Regions[Paper][Code]

  • 2D Articulated Human Pose Estimation[Project]

  • Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]

  • Estimating Human Pose from Occluded Images[Paper][Code]

  • Quasi-dense wide baseline matching[Project]

  • ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]

  • Real Time Head Pose Estimation with Random Regression Forests[Project]

  • 2D Action Recognition Serves 3D Human Pose Estimation[Project]

  • A Hough Transform-Based Voting Framework for Action Recognition[Project]

  • Motion Interchange Patterns for Action Recognition in Unconstrained Videos[Project]

  • 2D articulated human pose estimation software[Project]

  • Learning and detecting shape models [code]

  • Progressive Search Space Reduction for Human Pose Estimation[Project]

  • Learning Non-Rigid 3D Shape from 2D Motion[Project]

 

十二、图像处理:

  • Distance Transforms of Sampled Functions[Project]

  • The Computer Vision Homepage[Project]

  • Efficient appearance distances between windows[code]

  • Image Exploration algorithm[code]

  • Motion Magnification 运动放大 [Project]

  • Bilateral Filtering for Gray and Color Images 双边滤波器 [Project]

  • A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [Project]

 

十三、一些实用工具:

  • EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]

  • a development kit of matlab mex functions for OpenCV library[Project]

  • Fast Artificial Neural Network Library[Project]

 

十四、人手及指尖检测与识别:

  • finger-detection-and-gesture-recognition [Code]

  • Hand and Finger Detection using JavaCV[Project]

  • Hand and fingers detection[Code]

 

十五、场景解释:

  • Nonparametric Scene Parsing via Label Transfer [Project]

 

十六、光流Optical flow:

  • High accuracy optical flow using a theory for warping [Project]

  • Dense Trajectories Video Description [Project]

  • SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]

  • KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]

  • Tracking Cars Using Optical Flow[Project]

  • Secrets of optical flow estimation and their principles[Project]

  • implmentation of the Black and Anandan dense optical flow method[Project]

  • Optical Flow Computation[Project]

  • Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]

  • A Database and Evaluation Methodology for Optical Flow[Project]

  • optical flow relative[Project]

  • Robust Optical Flow Estimation [Project]

  • optical flow[Project]

 

十七、图像检索Image Retrieval

  • Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval [Paper][code]

 

十八、马尔科夫随机场Markov Random Fields:

  • Markov Random Fields for Super-Resolution [Project]

  • A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]

 

十九、运动检测Motion detection:

  • Moving Object Extraction, Using Models or Analysis of Regions [Project]

  • Background Subtraction: Experiments and Improvements for ViBe [Project]

  • A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]

  • changedetection.net: A new change detection benchmark dataset[Project]

  • ViBe - a powerful technique for background detection and subtraction in video sequences[Project]

  • Background Subtraction Program[Project]

  • Motion Detection Algorithms[Project]

  • Stuttgart Artificial Background Subtraction Dataset[Project]

  • Object Detection, Motion Estimation, and Tracking[Project]

ZZ: http://www.yuanyong.org/cv/cv-code-one.html

本文链接:http://cvchina.net/post/50.html
原创文章如转载请注明:转载自计算机视觉网-AI技术供需平台-计算机视觉论坛谢谢!

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。